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SUMMARY

Modeling of gravity current flows is important in many problems of science and engineering. Gravity
currents are primarily horizontal flows driven by a density difference of few per cents. This phenomenon
occurs in many scales in nature, such as ocean and marine flows, sea breeze formation, avalanches, turbidite
flows, etc. Most of the gravity current simulations employ structured grid or spectral methods. In this work,
we simulate gravity-driven flows by a parallel stabilized edge-based finite element code with particular
emphasis on the simulation of the lock-exchange problem for planar and cylindrical configurations. Our
results are validated against other highly resolved numerical simulations and experiments. Copyright q
2008 John Wiley & Sons, Ltd.
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1. INTRODUCTION

Gravity current occurs when an amount of fluid displaces due to a difference in the density
caused by differences in temperature, fine grain particles in suspension, salinity or the mixture
between fluids [1]. Severe squalls associated with thunderstorms, where a cloud of cold air
suddenly displaces horizontally mixing with hot air close to the seashore, the formation
of sea-breeze in coastal areas, displacement of piroclastic clouds discharged by volcanoes,
turbidity currents formed by the discharge of sediments arising from rivers into the sea,

∗Correspondence to: Alvaro L. G. A. Coutinho, Center for Parallel Computations and Department of Civil Engineering,
Federal University of Rio de Janeiro, P.O. Box 68506, RJ 21945-970, Rio de Janeiro, Brazil.

†E-mail: alvaro@nacad.ufrj.br

Contract/grant sponsor: CNPq; contract/grant number: 301.251/2005-3
Contract/grant sponsor: Petroleum National Agency (ANP/Brazil)

Copyright q 2008 John Wiley & Sons, Ltd.



1138 R. N. ELIAS, P. L. B. PARAIZO AND A. L. G. A. COUTINHO

snow avalanches and leakage of heavy gases, are practical examples of gravity currents of
scientific relevance [1]. Particularly, turbidity currents are a very efficient transport mecha-
nism of an enormous amount of sand. According to Lucchesi [2], this is the main formation
mechanism of rocks called turbidites. These rocks host the majority of offshore oil reserves
in Brazil.

There exists a large concern in the scientific community for experimental studies to help in
understanding this kind of flows. Most of these studies are focused on idealized hypothesis,
where the main aspects related to gravity currents are treated in a simplified or isolated manner.
These works frequently employ simple geometries with flows restricted to channels where the
main features of the flow can be easily understood and studied. For a review regarding experi-
mental and theoretical works about gravity currents, we suggest [1]. Experimental studies such
as those by Neufeld [3], Shin et al. [4] and Marino et al. [5] are important to understand the
dynamics of gravity currents and the global features of the flow, such as the lobe and cleft
mechanisms. However, there has been an increasing use of numerical methods to model gravity
currents, mainly due to the growth in the computational resources and the development of effi-
cient numerical software in the past decades. Most of these numerical studies have focused on
structured grids and spectral methods employing a direct numerical simulation (DNS) approach
where even the fine scales of the flow are represented [6–11]. Recently, a comprehensive study
on the dynamics of the front velocity during the different phases of spreading, namely, accel-
eration, slumping, inertial and viscous phases, has been carried out by Cantero et al. [12].
It involved highly resolved three-dimensional and two-dimensional simulations in planar and
cylindrical configurations. They verified that two-dimensional simulations underpredict the front
location and velocity during the spreading phases, but the structure and dynamics of the three-
dimensional currents were in good agreement with previously reported numerical and experimental
observations.

Such works are important since they are also able to supply detailed information about lobes
and cleft formation, characteristic structures of gravity currents. On the other hand, the DNS
requires a large computational cost, even for modern computers and solvers. Incorporating a
turbulence model to reduce the need to account for all the small scales of the flow can decrease
computing time significantly. Large eddy simulation (LES) is a technique where the large scales
of the flow are fully resolved with a model being used to account for the small scales. This is
based on filtering the Navier–Stokes equations to separate the large scales from the small (see
Sagaut et al. [13]). In Ooi [14] and Ooi et al. [15], a detailed study of three-dimensional lock-
exchange gravity flow is performed using a non-uniform Cartesian mesh finite volume LES code
with a dynamic Smagorinsky model as described by Pierce and Moin [16]. These studies demon-
strated that 3D LES is able to correctly capture most of the important aspects of lock-exchange
gravity-driven flows at high Grashof numbers where DNS simulations are computationally too
expensive. For complex geometries of practical interest, however, such as those found in coastal
lines, mountains, ocean bathymetry, canyons, etc., DNS or LES on structured grids suffer from
severe geometrical constraints. According to Pain et al. [17], unstructured grid methods, such
as finite elements and finite volumes, handle the complex geometries found in these natural
scenarios very easily and form an excellent framework for modeling gravity currents in coarse and
fine scales.

A first attempt towards the simulation of gravity currents by stabilized finite elements was
performed by Cantero et al. [18], employing a flow description based on the Reynolds averaged
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equations and a closure model. Their three-dimensional simulation of a lock-exchange device,
where a denser fluid consisting of a salt–water mixture displaces fresh water, showed good
agreement with experimental measurements. Nevertheless, several works indicate that numerical
viscosities generated by stabilized methods act as Smagorinsky-like eddy viscosities present in
LES [19–23]. Indeed, the works of Guasch and Codina [24] and de Sampaio et al. [25] provide
support, with different arguments, to the idea that no extra physical LES modeling should be
added to the equations. For the orthogonal subgrid scale stabilized finite element method, Guasch
and Codina [24] proved that the contribution to the energy balance equations of the stabilized
terms is proportional to the physical dissipation rate. In [25] it was shown that a particular
stabilized finite element method is equivalent to the use of a Galerkin method on the spatially
filtered equations, where a particular subgrid model, proportional to the discretization residual, is
applied. Another interpretation is provided in [26], which recognizes that introducing some form
of dissipation is essentially adapting the physical and mathematical models to accommodate a
deficiency in the choice of mesh, that is, incorporating subgrid effects. Therefore, in this work
we attempt the computational simulation of turbulent gravity currents by a stabilized edge-based
finite element method with no explicit model for subgrid scales other than the one intrinsically
induced by the numerical method itself. The finite element method is an edge-based streamline-
upwind/Petrov–Galerkin and pressure-stabilizing/Petrov–Galerkin (SUPG/PSPG) formulation.
For recent reviews of stabilized finite element methods, we refer to Tezduyar [27] and Tezduyar and
Sathe [28].

Edge-based data structures have been introduced in the finite element context to speed up
explicit compressible flow simulations (see Lohner [29]). More recently, Ribeiro et al. [30]
presented an edge-based implementation for stabilized semi-discrete and space–time finite
element formulations for shallow water equations, Catabriga and Coutinho [31] for the implicit
SUPG solution of the Euler equations, Soto et al. [32] for incompressible flow problems with
fractional step methods and Kraft et al. [33] for a segregated symmetric stabilized solution
of incompressible flow with heat transfer and the parallel simulation of viscoplastic and free
surface flows [34, 35]. It has been shown by Ribeiro and Coutinho [36] that, for unstructured
grids composed by tetrahedra, edge-based data structures decrease the number of floating point
operations and indirect addressings in matrix–vector products needed in the Krylov space solvers
and diminish the storage area to hold Jacobians compared with element and pointwise data
structures, particularly for problems involving many degrees of freedom. The construction of
edge operations are completely algebraic [30, 31, 33–35], based on the concept of disassem-
bling element operators, regardless of the particular underlying finite element formulation,
thus providing a fast platform for simulation of complex problems such as those found in the
present work.

Validations of the present approach are performed for head current position and velocity
against DNS and LES simulations previously presented in [7, 8, 10, 12, 14, 37] for planar and
cylindrical lock-exchange configurations. For the planar case, we also compare our results with
the experiments of Shin et al. [4]. These parameters were chosen since they are important to study
the ability of the gravity current to transport sediments for long distances and explain how the
sedimentation and erosional processes take place [38].

In the remainder of this paper, the governing equations and finite element formulation are
presented in Section 2, the solution procedure in Section 3, the test problems in Section 4 and
conclusions and final remarks summarized in Section 5.
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2. GOVERNING EQUATIONS

This section presents the governing equations for incompressible fluid flow and advection–diffusion
transport of the gravity current as well as the corresponding stabilized edge-based finite element
formulations.

2.1. Incompressible flow and gravity current transport

Let us consider the spatial domain given by �⊂�ndim , where ndim is the number of spatial
dimensions and � the boundary of �. In this work, we consider the velocity–pressure formulation
of the Navier–Stokes equations in dimensionless form to describe the incompressible fluid flow
of two immiscible fluids with densities �̃0 and �̃1, following the Boussinesq hypothesis where the
density differences are small, typically not larger than 5%. Thus, the dimensionless equations are

�u
�t

+u·∇u−�g=∇ ·r in �×[0, tf] (1)

∇ ·u=0 in �×[0, tf] (2)

r(u, p)= pI+ 2√
Gr
e(u) (3)

�(u)= 1
2 (∇u+(∇u)T) (4)

��

�t
+u·∇�−∇ ·

((
1

Sc
√
Gr

)
∇�

)
=0 in �×[0, tf] (5)

where � is the dimensionless density fluctuation, �=(�̃− �̃0)/(�̃1− �̃0), u, p and t the dimen-
sionless velocity, pressure and time, respectively. Here, g is a unit vector pointing in the gravity
direction and Gr is the Grashof number; a dimensionless relationship between the buoyancy and
viscous forces is given by

Gr =
(
U0

�h0

)2

(6)

where � is the kinematic viscosity, h0 is a characteristic length of the flow, U0=√gh0(�̃1− �̃0)/�̃0
is the buoyancy velocity, g is the gravity acceleration and Sc is the Schmidt number,

Sc= �

�
(7)

where � is the diffusivity of the quantity responsible for the density difference. Essential and
natural boundary conditions for Equation (1) are u=g on �g and n·r=h on �h, where �g and
�h are complementary subsets of the domain boundary �. Functions g and h are given and n is
the unit outward normal vector of �. A divergence-free velocity field u0(x) is the initial condition
of Equation (1). For Equation (5) the essential and natural boundary conditions are �=g� on ��

g

and n·(1/Sc√Gr)∇�=h� on ��
h , where ��

g and ��
h are complementary subsets of � and g� and

h� are given functions. The initial condition for Equation (5) is �0(x).
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2.2. Finite element formulation

For the weak form of Equations (1)–(4), we assume the following weight and trial function spaces
for the velocity and pressure: Shu , V

h
u , S

h
p and V h

p = Shp. The finite element method corresponding
to the SUPG/PSPG formulation for the incompressible flow can be expressed as follows: find
uh ∈ Shu and ph ∈ Shp such that ∀wh ∈V h

u and ∀qh ∈V h
p :

∫
�
wh ·

(
�uh

�t
+uh ·∇uh−�g

)
d�+

∫
�

�(wh) :�(ph,uh)d�−
∫

�h

wh ·hd�+
∫

�
qh∇ ·uh d�

+
nel∑
e=1

∫
�e

[�SUPG�uh ·∇wh+�PSPG∇qh]·
[(

�uh

�t
+uh ·∇uh

)
−∇ ·�(ph,uh)−�g

]
d�e

+
nel∑
e=1

∫
�e

�LSIC∇ ·wh∇ ·uh d�e=0 (8)

In the above equation, the first four integrals on the left-hand side represent standard terms due to the
Galerkin formulation and the first sum of element-wise integrals corresponds to the SUPG/PSPG
stabilization, whereas the second summation is the least-squares incompressibility constraint (LSIC)
stabilization term, added to prevent oscillations in high Reynolds number flows [27]. Following
Tezduyar et al. [39], we have evaluated the stabilization terms by the following expression:

�SUPG=�PSPG=
[(

2‖uh‖
he

)2

+9

(
4√

Grhe2

)2
]−1/2

(9)

where uh is the local velocity vector and he is the element characteristic length. In Equation (8)
the LSIC stabilization is computed as

�LSIC= ‖uh‖he
2

(10)

As noted by Akin et al. [19], the stabilization parameters induce a numerical viscosity propor-
tional to ‖uh‖, which acts similar to the eddy viscosity introduced by the Smagorinsky turbulence
model. The temporal discretization of Equation (8) gives rise to a nonlinear system of equations
to be solved at each time step.

The finite element formulation of Equation (5) can be expressed as follows: find �h ∈ Sh� , such

that, ∀wh ∈V h
� ,

∫
�

wh
(

��h

�t
+uh ·∇�h

)
d�+

∫
�

∇wh ·
(

1

Sc
√
Gr

)
∇�h d�−

∫
��
h

wh ·h d�

+
nel∑
e=1

∫
�e

�̄SUPGuh ·∇wh
(

��h

�t
+uh ·∇�h−∇ ·

((
1

Sc
√
Gr

)
∇�h

))
d�e

+
nel∑
e=1

∫
�e

�(�h)∇wh ·∇�h d�e=0 (11)

Copyright q 2008 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2008; 57:1137–1152
DOI: 10.1002/fld



1142 R. N. ELIAS, P. L. B. PARAIZO AND A. L. G. A. COUTINHO

where Sh� and V h
� are the weight and trial finite element functions. The first two integrals represent

the Galerkin formulation of Equation (5) and the first sum of element-wise integrals is due to the
SUPG stabilization, whereas the second element-wise summation is the discontinuity capturing
(DC) term. The diffusivities induced by both SUPG and DC terms may be also interpreted as
representing the effects of the fine scales in the density fluctuation transport as in the Smagorinsky
model [14–16]. Note although that DC yields a nonlinear subgrid diffusivity. In this work, we use
a residual-based DC term to represent these effects, the Y Z� DC introduced in [40]. The temporal
discretization of Equation (11) leads to a system of nonlinear equations to be solved at each time
step due to the nonlinear diffusivity term. The stabilization parameter �̄SUPG is computed by a
relation similar to Equation (9), where

√
Gr is replaced by Sc

√
Gr . In the case of the Y Z� DC,

the nonlinear diffusivity � is evaluated as

�(�h)=
(
he
2

)�

|�̄−1Re(�h)|
(

3∑
j=1

∣∣∣∣�̄−1 ��h

�xi

∣∣∣∣
2
)�/2−1

(12)

where Re(�h) is the element residual of Equation (11), that is,

Re(�h)= ��h

�t
+uh ·∇�h−∇ ·

(
1

Sc
√
Gr

)
∇�h (13)

Note that if �=1 and the reference density �̄=1, the Y Z� DC term renders to the consistent
approximated upwind method [41]. Also, in the numerical examples presented in the following
section, we will investigate the effects of omitting the time-derivative term from the definition of
the element residual in (13).

3. SOLUTION PROCEDURE

The solution of all test problems presented in this work employed the EdgeCFD software. It is
a Fortran90 finite element code consisting of an outer time integration loop of two staggered-
coupled systems of equations. In this software, most of the computational cost comes from the
u–p coupled solution of the incompressible flow equations, whereas the cheaper part is due to
the transport of the density fluctuation, �. Time integration is a predictor–multicorrector algorithm
with adaptive timestepping by a proportional–integral–Derivative (PID) controller (further details
available in [42]). Within the flow solution loop, the multi-correction steps correspond to the
inexact-Newton method as described in [43]. In this method, the tolerance of the linear solver is
adapted according to the history of the solution residua. As linear solver, EdgeCFD employs the
generalized minimal residual (GMRES) method since both equation systems, stemming from the
incompressible flow and density fluctuation transport, are non-symmetric. Furthermore, a nodal
block-diagonal and diagonal preconditioners are used, respectively, for flow and transport. Most
of the computational effort spent in the solution phase is devoted to matrix–vector products. In
order to compute such operations more efficiently, we have used an edge-based data structure
as detailed in [43]. According to Ribeiro and Coutinho [36], this data structure, when applied
to problems as those described in this work, is able to reduce indirect memory access, memory
requirements to hold the coefficients of the stiffness matrices and the number of floating point
operations when compared with other traditional data structures such as element by element or
compressed sparse row. The computations are performed in parallel using a distributed memory
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paradigm through the message passing interface library. The parallel partitions are generated by
the Metis library [44], whereas the information regarding the edges of the computational grid is
obtained from the EdgePack library as described in [45]. EdgePack also reorders nodes, edges
and elements to improve data locality, exploiting efficiently the memory hierarchy of current
processors.

4. TEST PROBLEMS

This section presents the problems employed to validate the finite element solution scheme proposed
in this work for the solution of gravity current flows. The computations were performed in message
passing parallelism using eight cores of Itanium-2 Montecito CPUs (1.6GHz/8MB) in an SGI
Altix 450 system.

4.1. Planar lock exchange

One of the first measurements related to gravity currents was done in channels close to the coastal
line where the mixture between fresh and sea water when a gate opens and the fluids start to
flow due to the gravity takes place [1]. Such flows are named as lock-exchange flows and have
been widely used to validate numerical simulations since they are very simple to reproduce in the
laboratory. Therefore, there is a reasonable number of experimental data available for the main
structures developed in this flow, such as form factor, dimension and frequency of lobes and clefts
structures, as well as the position and displacement of the mixture head [5, 4]. In [7, 8] Härtel
et al. discuss in detail the formation of these structures for configurations including slip and
no-slip boundary conditions at the bottom and the top of the domain. In the same work, the
authors present results obtained by DNS using a pseudo-spectral code. Other works reporting
results for the same problem using DNS include [10, 12]. These works employ structured grids
where it is common to apply a small perturbation at the beginning of the simulation in order to
force a non-symmetric and more realistic flow. Such perturbation is not necessary in our tests
since the non-uniform element orientation in an unstructured grid discretization is able to produce
this effect.

Figure 1 presents the problem domain, with the dimensions Lx =30.0, Ly =3.0 and h=2.0.
This domain was discretized with an unstructured grid composed by 2 630 883 tetrahedra, 3 202 772
edges and 471 585 nodes. The difference in the specific mass between the heavy and the light
fluid was not beyond 5% in order to follow the Boussinesq hypothesis. At the bottom and top
faces, no-slip boundary conditions were applied, whereas in the other faces a slip condition was
assumed. Initially the domain was half filled with the denser fluid. We set for the flow solver an

Figure 1. Planar lock exchange—problem description.
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inexact-Newton initial linear tolerance of 0.1, considering as stopping criteria a maximum of 7
inexact-Newton iterations per time step or a 3 orders of magnitude decrease on the relative residual
and relative solution increment. The number of Krylov-space vectors for the inner nodal-block
preconditioned GMRES method was set to 35. For the density fluctuation transport, we allowed a
maximum of 10 nonlinear iterations or also a 3 orders of magnitude decrease on the relative residual
and relative solution increment. The linearized systems were solved for a fixed tolerance of 10−4

with a diagonal preconditioned GMRES with 35 Krylov-space vectors. All computations were
carried out until 20 time units and the Courant–Friedrichs–Lewy condition was chosen adaptively
by the PID control algorithm in the range 0.5–2.

We performed a series of experiments investigating the influence on the front development of
the LSIC term on the flow formulation and the full or just the advective residual in the nonlinear
subgrid diffusivity for the density fluctuation transport. In these experiments, we set Gr =1.5×106

and Sc=0.71 following [7, 8, 10, 12]. Figure 2 shows the results for three different representative

Figure 2. Influence of formulation terms in the front evolution, density isosurface �=0.5: (a) solution
at t=10.113, SUPG/PSPG, Y Z� with full residual; (b) solution at t=10.109, SUPG/PSPG, Y Z� with

advective residual; and (c) solution at t=10.221, SUPG/PSPG, LSIC and Y Z� with full residual.
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simulations at around 10 time units. In Figure 2(a) and (b), we did not consider the LSIC term
in the flow formulation and the nonlinear subgrid diffusivity for the density fluctuation transport
is computed with the full residual (Figure 2(a)) or the advective part (Figure 2(b)). In Figure
2(c), we show the solution computed considering LSIC and the full residual for the subgrid
diffusivity.

Comparing the three solutions in Figure 2, we clearly see that when the effects of LSIC
term were considered, too much dissipation is present. The solutions without LSIC present well-
defined Kelvin–Helmholtz billows and the formation of typical lobes and clefts. Also, the solution
with the nonlinear subgrid diffusivity for the density fluctuation computed with the full residual
presents a slightly sharper definition of lobes and clefts when compared with the one computed
with the advective residual. These several formulation variants also have different computational
performances, since they affect the nonlinearities. Table I presents computational data for the three
cases in Figure 2(a)–(c), labeled, respectively, as Run (a), (b) and (c). We may observe that the
solution with LSIC was not only more dissipative but also slower, since the LSIC term added
more nonlinearity to the flow formulation. The other solutions achieved comparable performances.
However, Run (a) required on average slightly less effort to solve the nonlinear problems than
Run (b). Also, it is interesting to note that the more dissipative solution reached the desired
simulation time with larger time steps.

Figure 3 presents the results obtained in this work for Run (a) qualitatively compared with other
numerical results presented by Härtel et al. [7] (Figure 3(b)) and Cantero [10] (Figure 3(c)) for the
time units 0, 5, 10, 15 and 20. Flow is visualized by a density isosurface �=0.5. For comparison
purposes, it is important to note that Figure 3(b) presents the front position for a shorter domain
(Lx ∈[−15,15]) than those shown in the other figures (Lx ∈[−20,20])]). We can note a good
qualitative agreement between our results and the others. It is important to emphasize that Härtel
et al. [7] used a computational grid with 4.25 million points and Cantero et al. [10] a grid with
1.7 million points. Thus, in the present LES approach, we have reached fairly good representation
of the global front behavior using a grid resolution much smaller than those presented in these
references.

Figure 4 presents the evolution of the mixture front position with time. We have determined the
head position by inspection of the nodes formed by the evolution in time of the density isosurfaces
corresponding to �=0.5. This is a crude method for determining the front evolution compared
with the more sophisticated methods in Cantero et al. [12] and Ooi [14], based, respectively, on
spanwise averages of current height and front position. Nevertheless, we may note that after an
initial acceleration period, the front starts to displace at a near constant velocity, in agreement
with the DNS results of Cantero et al. [12] and the highly detailed LES results of Ooi [14], also
shown in Figure 4. This behavior is characteristic of the slumping phase of the flow, as discussed
in [7, 8, 12, 14]. Note although that Ooi’s results are for a Grashof number Gr =1.25×106. In

Table I. Computational performance comparisons in the planar lock-exchange problem.

Run (a) Run (b) Run (c)

Wall time (h) 14.14 14.74 20.63
Time steps 1601 1600 1458
Inexact-Newton iterations in flow solver 3–7 3–5 7
Nonlinear iterations in density solver 3–7 2–3 5–7
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Figure 3. Qualitative comparison of density isosurfaces �=0.5 for times 0, 5, 10, 15 and 20 between
present results (a) with those shown in Härtel et al. [7] (b) and Cantero et al. [10] (c).
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Figure 4. Head position evolution in the planar problem for Gr =1.5×106 and Sc=0.71.

Figure 4, we also include the experimental results of Shin et al. [4]. It is worth noting the good
agreement between the present results at early times and the experimental data. We may compute
the Froude number, defined as Fr =uf/U0 using the near constant slope of our solution in Figure 4,
that is, the velocity of the mixture front, uf. We have found Fr =0.579, which is in excellent
agreement with those found in Hartel et al. [7], Fr =0.57, Cantero et al. [12], Fr =0.576, and
Ooi [14], Fr =0.58.
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4.2. Cylindrical lock exchange

According to Cantero et al. [12], the main character of the planar case described in the previous
section is that the planform area increases linearly. However, in the case of a discharge of dense
fluid in a cylindrical configuration, the planform area increases quadratically. This difference
completely changes the dynamics of the developed flow when compared with the planar case.
Moreover, for the cylindrical case, the mixture intensity tends to diminish according to the front
evolution, whereas at the initial stages there exists an abrupt concentration of inertia and vorticity
in regions close to the flow head with the formation of a big bulb that pushes the fluid forward
and promotes an increase in the contact between the fluid phases. Consequently, more mixing
and dissolution effects take part as described in [10, 12, 37, 46]. In this case, the flow dynamics is
much similar to when a cloud of heavy gas is discharged in the atmosphere. It also mimics the
point source river discharge in a lake or an open sea, where particulate density flows can spread
radially and form important turbidity flows.

The problem considered here consists of a cylindrical column of dense fluid centralized in a
circular domain. Since this flow tends to develop quasi-axisymmetrically, we have used, following
[12, 37], a model corresponding to a 90◦ sector as illustrated in Figure 5. The domain dimensions
are Lx =20.0, Ly =20.0 and h=2.0. The initial radius of the heavier fluid is r0=2.0 and the
unstructured grid was built with 2 125 139 tetrahedra, 2 607 939 edges and 390 527 nodes. Following
the planar case and References [10, 12, 46], the Grashof and Schimdt numbers are Gr =1.5×106

and Sc=0.71. We employed in this simulation the SUPG/PSPG formulation for the flow and the
SUPG formulation with Y Z� with full residual for the density fluctuation. In this run, we adopted
a fixed time step of 0.01 and all other computational parameters were the same from the planar
case. Wall clock time for this run was 10.16 h to reach 20 time units.

Figure 6 shows a qualitative comparison of the density fluctuation displacement between the
results obtained in this work with those presented by Cantero et al. in [10, 12, 37] using a pseudo-
spectral method with a computational grid 60 times finer. We can observe by the evolution of the
density fluctuation isosurface �=0.15 that, although with less spatial resolution, the main three-
dimensional features of the flow are well represented, e.g. lobes and clefts and Kelvin–Helmholtz
billows. It is known from experimental and numerical results (see [1, 10, 12, 37, 46]) that in this
problem, the mixture front advance presents three phases with distinct behavior for the velocity
and displacement. In a short initial phase, the flow head accelerates, then in the slumping phase

Figure 5. Cylindrical lock exchange—problem description.
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Figure 6. Qualitative comparison of density isosurfaces �=0.15 for time units 0, 5, 10, 15 and 20 between
the present results (a) and Cantero et al. [10, 12] (b).
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Figure 7. Radial head position evolution in the cylindrical problem for Gr =1.5×106 and Sc=0.71.

the front velocity varies very slowly and in a later inertial/viscous phase the dense fluid starts to
decelerate. Such behavior was also verified in our tests as can be seen in Figure 7, where the flow
head mean radial position is plotted against time. The radial position is measured by inspection
of the front node evolution corresponding to the density isosurface �=0.15 projections along the
two horizontal axis, X and Y . In Figure 7 we plot the mean of these values together with the head
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Table II. Current head height comparison in the
cylindrical lock-exchange problem.

Time Cantero et al. [37] Present work

5.50 0.40 0.43
7.5 0.26 0.26
10.0 0.33 0.32
15.0 0.35 0.37
20.0 0.32 0.37

position obtained by spanwise current height averages from the DNS results of Cantero et al. [12].
We may observe fairly good agreement between the present results and those in [12].

Another quantitative comparison is given in Table II, which shows the current head height at
different times for the present work together with the DNS results of Cantero et al. [37]. We note
excellent agreement between both solutions. We are able to capture the decrease of the current head
height in the transition from the slumping to the inertial flow phase and its subsequent increase
at later times. Another feature worth noting is that the number of lobes in the present simulation
is approximately constant. We counted, by inspection, 16–18 lobes, which is a little less than the
number of lobes observed by Cantero et al. [37].

5. CONCLUSIONS

This work presented an application of stabilized edge-based finite elements in the modeling of
phenomena related to gravity currents. This is a first step in a research intending to simulate
particulate gravity currents, which are able to transport large amounts of sand to the deep ocean,
flowing over very irregular sea floors with associated deposition and erosion processes. In this
practical problem, multiple analyses are necessary to understand how large amounts of sand can
accumulate far from inland.

The turbulent nature of such currents poses a challenge for a practical application of such
simulations. With this in mind, the choice of a simple LES approach with no explicit subgrid model
other than the one induced by the stabilized method itself has shown its ability to reproduce the main
aspects of the current structure, such as the formation of lobes, clefts and Kelvin–Helmoltz billows,
as well as the head position evolution for planar and cylindrical lock-exchange configurations.
We investigated, for the planar case, several stabilized formulation variants. We have found that
solutions with the LSIC stabilization term were over-dissipative. Also, solutions with the Y Z� DC
operator with full residual presented more pronounced lobes and clefts. Nevertheless, fairly good
agreement was achieved for the planar and cylindrical cases, where we compared our solutions
with highly resolved DNS and LES results as well as experimental data (planar case only). It is
also important to emphasize that the reduced time and reasonable accuracy of the present approach
is a critical issue when simulating multiple flow configurations found in practice. Certainly there
is room for improvement in our approach to turbulence. The recent residual-based variational
multiscale method of Bazilevs et al. [47] represents a more mathematically coherent approach to
LES, where the effects of subscales are consistently accounted. We intend, in the near future, to
extend our present simulation capabilities in this direction. Another practical aspect of interest is
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the ability of the finite element method to handle complex geometries, like the ones encountered
in deep sea or ocean floors. The irregularities in the sea floor bathymetry are known to have a
strong influence on current dynamics and the present approach opens new possibilities to tackle
such important problems.
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